Department of Mathematics

Date: Oct. 31st, 2010

Duration: 90 min.

Calculators, mobile phones, pagers and all other mobile communication equipment are not

allowed. You must show your work and all important steps to receive credit.

Answer the following questions:

$$f(x) = \left(2 + \sin^{-1}\left(\frac{x}{3}\right)\right)^3, \quad x \in [0,3].$$

a. Show that
$$f^{-1}$$
 exists.

b. Find
$$f^{-1}$$
 and its domain.

c. Find the equation of the tangent line to the curve
$$y = f^{-1}(x)$$
 at $x = 8$.

a.
$$e^x e^y = e^{x+y}$$
.

b.
$$\log_x(xy) \cdot \log_y(xy) = \log_x y + \log_y x + 2$$

for any positive values
$$x, y \neq 1$$
.

3. Solve the following inequality for
$$x$$
:

[3+3pts.]

[2+2 pts.]

$$\tan^{-1}[2^x-5]\geq 0$$

4. Find the exact value of:

$$\cos\left(\cot^{-1}\left(\frac{4}{3}\right)\right)$$
.

a.
$$\int \frac{dx}{\sqrt{4^x+1}}$$

b.
$$\int \frac{\sinh x}{e^{\cosh x} + e^{-\cosh x}} dx.$$

6. Use logarithmic differentiation to find
$$\frac{dy}{dx}$$
 if

$$y = \frac{e^{x^2} \cos^{-1}(x)}{(\sinh x)^{2^x}}$$

Date: Oct. 31st, 2010 First Exam Solution

1. a.
$$f'(x) = \frac{\left(2 + \sin^{-1}\left(\frac{x}{3}\right)\right)^2}{\sqrt{1 - \left(\frac{x^2}{9}\right)}} > 0$$
, therefore f is increasing in $[0,3) \Rightarrow f$

is 1-1 and f^{-1} exists.

b.
$$y = \left(2 + \sin^{-1}\left(\frac{x}{3}\right)\right)^3 \implies y^{1/3} - 2 = \sin^{-1}\left(\frac{x}{3}\right) \implies x = 3\sin(y^{1/3} - 2)$$
 or

$$f^{-1}(x) = 3\sin(x^{1/3} - 2)$$
. Domain of f^{-1} is $\left[8, \left(2 + \frac{\pi}{2}\right)^3\right]$, where $\lim_{x \to 3^-} f(x) = \left(2 + \frac{\pi}{2}\right)^3$

and $\lim_{x\to 0^+} f(x) = 2^3$.

c.
$$\frac{d}{dx}f^{-1}(8) = \frac{1}{f'(f^{-1}(8))} = \frac{1}{f'(0)} = \frac{1}{4}$$
. The equation of the tangent line is

$$y = \frac{x}{4} - 2.$$

2. a. In the book.

b.
$$\log_x(xy) \cdot \log_y(xy) = \frac{(\ln x + \ln y)^2}{\ln x \ln y} = \frac{(\ln x)^2 + (\ln y)^2 + 2\ln x \ln y}{\ln x \ln y} = \frac{\ln x}{\ln y} + \frac{\ln y}{\ln x} + 2 = \log x$$

3.
$$\tan^{-1}[2^x - 5] \ge 0 \implies 2^x - 5 \ge \tan 0 \implies 2^x \ge 5 \implies x \ge \log_2 5$$
.

4. Let
$$\theta = \cot^{-1}\left(\frac{4}{3}\right)$$
, then $\cot \theta = \frac{4}{3}$. Therefore, $\cos \theta = \frac{4}{\sqrt{4^2 + 3^2}} = \frac{4}{5}$.

5. a. Let
$$u = 2^x \Rightarrow du = 2^x \ln 2 dx$$
. Then,

$$\int \frac{2^x dx}{2^x \sqrt{(2^x)^2 - 1}} = \frac{1}{\ln 2} \int \frac{du}{u \sqrt{u^2 - 1}} = \frac{1}{\ln 2} \sec^{-1} u + c.$$

b. Let
$$u = \cosh x \Rightarrow du = \sinh x \, dx$$
. Then, $\int \frac{\sinh x \, dx}{e^{\cosh x} + e^{-\cosh x}} = \int \frac{du}{e^u + e^{-u}}$. Let

$$z = e^u \Rightarrow dz = e^u du$$
, then $\int \frac{dz}{z^2 + 1} = \tan^{-1}(e^{\cosh x}) + c$. (Or let

$$t = e^{\cosh x} \Rightarrow \frac{dt}{t} = \sinh x \, dx.$$

6.
$$\ln y = \ln \left(e^{x^2} \cos^{-1}(x) \right) - 2^x \ln(\sinh x) = x^2 + \ln \cos^{-1}(x) - 2^x \ln(\sinh x).$$

Differentiating
$$\Rightarrow \frac{1}{y} y' = \left[2x - \frac{(1-x^2)^{-1/2}}{\cos^{-1}(x)} \right] - [2^x (\ln 2) \ln(\sinh x) + 2^x \coth x].$$

Therefore,
$$\frac{dy}{dx} = y \left[2x - \frac{(1-x^2)^{-1/2}}{\cos^{-1}(x)} - 2^x (\ln 2) \ln(\sinh x) - 2^x \coth x \right].$$